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ABSTRACT

Systematic evidence mapping offers a robust and transparent methodology for facilitating evidence-based approaches to
decision-making in chemicals policy and wider environmental health (EH). Interest in the methodology is growing;
however, its application in EH is still novel. To facilitate the production of effective systematic evidence maps for EH use
cases, we survey the successful application of evidence mapping in other fields where the methodology is more established.
Focusing on issues of “data storage technology,” “data integrity,” “data accessibility,” and “transparency,” we characterize
current evidence mapping practice and critically review its potential value for EH contexts. We note that rigid, flat data
tables and schema-first approaches dominate current mapping methods and highlight how this practice is ill-suited to the
highly connected, heterogeneous, and complex nature of EH data. We propose this challenge is overcome by storing and
structuring data as “knowledge graphs.” Knowledge graphs offer a flexible, schemaless, and scalable model for
systematically mapping the EH literature. Associated technologies, such as ontologies, are well-suited to the long-term
goals of systematic mapping methodology in promoting resource-efficient access to the wider EH evidence base. Several
graph storage implementations are readily available, with a variety of proven use cases in other fields. Thus, developing
and adapting systematic evidence mapping for EH should utilize these graph-based resources to ensure the production of
scalable, interoperable, and robust maps to aid decision-making processes in chemicals policy and wider EH.
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Data relevant to assessing the human and ecological health risks
associated with exposure to chemical substances are increasingly
available to stakeholders (Barra Caracciolo et al., 2013; Lewis et al.,
2016). This trend is owed to a variety of factors, including the ad-
vent of the Internet and increasingly sensitive analytical techni-
ques (Lewis et al., 2016), regulatory and economic changes
(Lyndon, 1989; Pool and Rusch, 2014), demands for increased

transparency (Ingre-Khans et al., 2016), stricter regulatory data
requirements (Commission of the European Communities, 2001;
United States Environmental Protection Agency, 2016), reform of
regulatory reliance on in vivo toxicity testing (ECHA, 2016), and a
continually growing chemicals industry. The growing pool of
available evidence has significant potential for informing regula-
tory and risk management decision making.
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Evidence-based approaches aim to minimize the bias associ-
ated with cherry-picking an unrepresentative subset of evi-
dence for consideration in the decision-making process. They
advocate for robust, transparent consideration of all relevant,
available data and are the core of the evidence-based toxicology
movement (Hoffmann and Hartung, 2006; Hoffmann et al.,
2017). However, locating, organizing, and evaluating all relevant
data is challenging when the quantity of that data is very large
and growing exponentially.

Systematic evidence mapping is 1 such evidence-based ap-
proach to drawing into consideration all data which are relevant
to chemicals policy and risk management workflows (see
Wolffe et al., 2019). Systematic evidence maps (SEMs) are query-
able databases of systematically gathered research (Box 1). They
provide users with the computational access needed to orga-
nize, compare, analyze, and explore trends across a broader evi-
dence base (Clapton et al., 2009; James et al., 2016) by:

• Collating data from different sources and storing it in a single lo-

cation, such that users need only query a single database to sat-

isfy their information requirements;
• Extracting unstructured data and storing it in a structured format,

such that data can be programmatically accessed and analyzed;
• Categorizing extracted data using controlled vocabulary code,

such that evidence can be broadly and meaningfully compared

despite its inherent heterogeneity.

SEMs organize and characterize an evidence base such that
it can be explored by a variety of end-users with varied specific
research interests. The methodology was developed to address
some of the limitations of systematic review and has found ap-
plication in fields where formulating a single, narrowly focused
review question is difficult or uninformative (Haddaway et al.,
2016; James et al., 2016; Oliver and Dickson, 2016; Wolffe et al.,
2019). Similarly faced with this challenge is chemicals policy
and the fields which it encompasses, ie, environmental health
(EH) and toxicology. It is difficult to frame a single research
question with a scope which is simultaneously narrow enough
to elicit the synthesis of a coherent conclusion through system-
atic review, and also broad enough to address the varied infor-
mation requirements of chemicals policy workflows. This
means that potentially several syntheses over multiple system-
atic reviews are required to facilitate a single decision-making
process in chemicals policy. However, the significant demand
for time and resources associated with systematic reviews, and
the unmatched resource availability of chemicals policy, neces-
sitates a priority setting, or problem formulation process to en-
sure the most efficient use of systematic review. Thus,
systematic evidence mapping provides a valuable first step in
this prioritization process, where the identification of emerging
trends across the wider evidence base ensures resources can be
targeted most efficiently (see Wolffe et al. [2019] for further dis-
cussion of the applications of SEMs in chemicals policy).

These issues are likely to become increasingly pressing as the
chemicals policy paradigm shifts toward more evidence-based
approaches and methods such as systematic review gain promi-
nence. For example, agencies such as the U.S. EPA (EPA, 2018),
EFSA (European Food Safety Authority, 2010), and WHO (Mandrioli
et al., 2018; World Health Organization, 2019) have already begun
to incorporate systematic review in their chemical risk assess-
ment frameworks. Thus, ensuring that evidence synthesis efforts
are targeting the most appropriate issues, and that the data col-
lated for synthesis can be accessed for alternative applications,
potentially across agencies, is increasingly important.

Interest in the application of SEM methodology for this con-
text is beginning to emerge in the form of SEM exercises target-
ing chemicals policy issues (Martin et al., 2018; Pelch et al., 2019),
various working groups expanding their evidence synthesis ac-
tivities to include broader scoping and surveillance exercises
(NTP-OHAT, 2019; Pelch et al., 2019; The Endocrine Disruption
Exchange, 2019; Walker et al., 2018), and conference sessions
discussing the potential benefits of SEMs for EH (Beverly, 2019).
This emerging interest in SEM methodology, and its ability to fa-
cilitate evidence-based approaches, necessitates study of the
factors key to its successful adaptation to EH contexts.

Therefore, we seek to understand how SEM databases are
built and presented to end-users in fields where the practice is
more mature. We hope that contextualizing this understanding
within the needs of chemicals policy, risk management, and
wider EH research will expedite the development of effective ev-
idence mapping methods in this domain.

To achieve this, we examine the current state-of-the-art and
common practices associated with constructing and presenting
a SEM database in environmental management, a field with a
strong history of systematic mapping publications and method
development (Collaboration for Environmental Evidence, 2019c;
Haddaway et al., 2016, 2018a; James et al., 2016). We discuss the
implications of current practices for EH and highlight the chal-
lenges associated with using rigid data structures for storing the
highly connected and heterogeneous data associated with the
field. We outline the need for more flexible data structures in

Box 1 Glossary of Terms

Database An organized and structured collection of informa-
tion (data) stored electronically within a computer
system, which allows data to be accessed, manip-
ulated, and updated.

Systematic
evidence
map (SEM)

A queryable database of systematically gathered evi-
dence (eg, academic literature and industry
reports). SEMs extract and structure data and/or
metadata for exploration following a rigorous
methodology which aims to minimize bias and
maximize transparency.

Coding The process of assigning controlled vocabulary
labels or categories (referred to as “code”) to data,
which allows comparisons to be drawn despite
the heterogeneity of the underlying dataset. For
example, extracted data such as “mouse,” “rat,”
and “guinea pig” might all be coded as “rodent” for
broad comparison.

Query A request for data from a database. By requesting
data that meets a particular set of conditions, users
can query a database for a subset of information of
relevance to their specific research interests.

Schema The organizational plan (“blueprint”) for the struc-
ture of a database, detailing the entities stored in
the database, the attributes associated with those
entities, how those entities are related, what data-
types can be stored in the database, etc.

Schemaless Refers to databases which do not have a fixed and
predefined schema.

Schema,
on-write

Refers to the application of a schema before data is
stored (written) to the database.

Schema,
on-read

Refers to the application of a schema after data has
been written to the database, at the time the data
is accessed (read).

Ontology A shared and reusable conceptualization of a do-
main which applies a logically related controlled
vocabulary to describe the domain concepts, their
properties and relations.
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EH SEMs and introduce the concept of “knowledge graphs” as
an effective and intuitive model for the storage and querying of
highly connected EH data. Finally, we discuss graph-based SEMs
in the context of current, complementary efforts in the develop-
ment of toxicological ontologies, outlining the future of system-
atic evidence mapping for regulatory decision making.

MATERIALS AND METHODS

Survey of published Collaboration for Environmental Evidence SEMs.
We identified a dataset of exemplar SEMs for analysis: the com-
plete set of SEMs of the Collaboration for Environmental
Evidence (CEE). These maps were chosen because of CEE’s role
in pioneering the adaptation of systematic mapping methodol-
ogy from the social sciences (Clapton et al., 2009; James et al.,
2016). Through example (Collaboration for Environmental
Evidence, 2019b), communication (Collaboration for
Environmental Evidence, 2019a), published guidance (James
et al., 2016), and reporting standards (Haddaway et al., 2018b),
CEE advocate for systematic mapping and represent an on-
going case study for how the methodology can be developed as
a policy and decision-making tool. Understanding how system-
atic map outputs serve this function, and what methodological
adaptation is required to produce these outputs, is vital for suc-
cessfully applying the methodology in EH. Thus, the outputs (ie,
the queryable databases) of CEE’s more firmly established sys-
tematic mapping practice were surveyed.

All CEE systematic maps completed before July 2019 were
identified in the CEE Library (http://www.environmentalevi
dence.org/completed-reviews, last accessed July 2019). The
study reports and the Supplementary information for these
maps were downloaded and key metadata extracted, including
title, authors, publication date, and map objectives
(Supplementary Table 1). Metadata regarding the output of the
systematic mapping exercises were then gathered and assessed
in duplicate by T.A.M.W. and P.W. using a data extraction sheet
which asked open-ended questions relating to 4 key themes of
analysis: data storage technology; data integrity; data accessi-
bility; and transparency (Table 1). These themes were developed
in discussion among J.V., T.A.M.W., and P.W.

“Data storage technology” concerns the software used to
construct the systematic map databases and their associated
data storage formats.

“Data integrity” concerns the structures of the CEE maps.
Although an important aspect of data integrity, appraising the

data extraction efforts of mappers (ie, confirming that the data
extracted, coded, and stored in the database are an accurate
representation of their raw counterparts in the primary litera-
ture) was beyond the scope of this exercise. Rather than verify-
ing the data, how that data are represented (regardless of what is
represented) by the systematic map database output was
assessed by focusing on the ability of the systematic map to
maintain the relationships which underpin these data. For ex-
ample, a mapper may have extracted data from a study which
investigates outcomes in a population. Although the mapper
may have extracted data such as “outcome x” and “population
y”—the manner in which the database structures and organizes
these data will determine whether end-users can decipher that
“outcome x” is somehow related to “population y.”

“Data accessibility” concerns the capacity for CEE’s system-
atic maps to facilitate data exploration by end-users.
Systematic maps are research products in their own right
(Haddaway et al., 2016). They should therefore present end-
users with a means of programmatically accessing and query-
ing the data they store, such that trends in potentially large
datasets can be quickly identified with minimal manual effort.
Accessibility is an important consideration when producing
maps for an audience of varied technical skill, where ensuring
that the map is accessible for nonspecialist users should not
compromise the ability of more technical users to run complex
queries. Therefore, the extent to which CEE systematic mapping
exercises consider accessibility from the perspective of users
was surveyed by extracting eg, details on the level of guidance
provided to end-users wishing to query the systematic map
database, and recording P.W. and T.A.M.W.’s experience of
interacting with and querying the maps.

Finally, “transparency” concerns how systematic maps facil-
itated an end-user’s ability to validate the extent to which the
data presented in a map represents the data in the primary re-
search. This was achieved by determining whether the map
preserved a link between raw data and assigned controlled vo-
cabulary labels/categories (“code” - see Box 1)).

T.A.M.W. and P.W. independently noted answers to the data
extraction questions before discussing and agreeing on an ag-
gregate, consensus view. This was to contribute to comprehen-
sive coverage of potential discussion points in relation to each
theme. These aggregate assessments are presented in
Supplementary Tables 1–6 and are used to evidence the state-
of-the-art in terms of producing queryable systematic map
databases for exploration of the environmental management

Table 1. The Concepts Used to Guide Data Extraction and Subsequent Assessment and Discussion of the Outputs of CEE Systematic Mapping
Exercises

Concept Definition Metadata Extracted

Data storage
technology

How data extracted and collated during the systematic
mapping exercise were stored for future exploration

Format in which the systematic map database is presented
to users (eg, spreadsheet, relational database, in-text
data table, and in-text figure).

Data integrity How accurately the systematic map is able to represent the
raw study data on which it is based

How the relationships between entities (or study attributes)
which underpin the raw data are maintained in the sys-
tematic map.

Data
accessibility

How easy it is for end-users to access the data relevant to
their research interests, or the ability of the systematic
map to return data relevant to an end-user’s queries

The querying mechanisms recommended in the systematic
map’s study report (eg, filtering table columns and navi-
gating interactive dashboards).

Transparency The ability of end-users to verify how the systematic map
represents the raw study data on which it is based, ie,
whether the map maintains a link between raw extracted
data and eg, controlled vocabulary code.

Whether the map maintains a link between raw extracted
data and controlled vocabulary code (eg, map presents
code-only, map presents raw data and code), and how
this link is maintained.
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literature. Their contents are referenced throughout the Results
and Discussion sections of this survey.

RESULTS

Twenty-one systematic maps covering a variety of topics were
identified in the CEE library, published between October 2011
and January 2019 (Figure 1).

The aggregated, narrative assessments of each CEE system-
atic map can be found in Supplementary Tables 1–6. The
extracted data and aggregated assessments for each CEE sys-
tematic map are organized as follows:

• Supplementary Table 1—Bibliographic information
• Supplementary Table 2—Data storage technology
• Supplementary Table 3—Data integrity
• Supplementary Table 4—Data accessibility
• Supplementary Table 5—Transparency
• Supplementary Table 6—Additional notes

Excluded Maps
Two systematic maps (Johnson et al., 2011; Mcintosh et al., 2018)
are assessed in the Supplementary information but are ex-
cluded from further analysis, as neither provided a database
output which could be analyzed using our framework. Mcintosh
et al. (2018) yielded a null result and therefore provided no data-
base; Johnson et al. (2011) predated CEE’s Environmental
Evidence journal and its definition of systematic mapping and,
although it is included in the CEE library, presented only in-text
tables without an accompanying database.

Data Storage Technology
Two different data storage technologies are used in the outputs
of CEE systematic mapping projects: spreadsheets constructed
in Microsoft Excel (n¼ 14); and relational databases constructed
with the Microsoft Access relational database management sys-
tem (n¼ 5.) One mapping exercise used both of these technolo-
gies to present its outputs in 2 different formats (Haddaway
et al., 2014). The 2 versions of Haddaway et al. (2014) appear to be
identical except that the spreadsheet version includes the
results of a critical appraisal process where the relational data-
base version does not. As the spreadsheet version presents the
more complete dataset, Haddaway et al. (2014) has been coded
as a spreadsheet-based systematic map for the purposes of this
survey (see Supplementary Table 2, discussed in the “Data

Integrity” section). A brief description of each identified storage
technology can be found in Table 2.

Data Integrity
A single, flat data table (2-dimensional array of rows and col-
umns) was the output for the majority (84%) of CEE systematic
maps (16 of 19 maps surveyed, ignoring any look-up tables
housing controlled vocabulary code). 80% (4 out of 5) of the
maps using the relational database storage technology were
also structured as a single, flat data table.

Three maps presented more than 1 table. Two presented at
least 2 tables in separate files which were not formally related
to each other (Haddaway et al., 2018a; Sola et al., 2017), and 1 pre-
sented multiple tables which were related to each other in a 1:1
manner within a relational database. Systematic maps were
considered to be stored in more than 1 table if there was limited
overlap of the data fields housed in each table ie, if querying the
map required accessing information from more than 1 table.
Sola et al. (2017) is an example of this, providing the results of its
quality appraisal process separately to the data it extracted and
coded from the literature—thus any queries investigating criti-
cal appraisal in conjunction with another variable require the
user to access information from both tables. This distinction
was required because some maps, Haddaway et al. (2014) and
Randall et al. (2015), presented their outputs in multiple tables,
but the additional tables were simply subsets of the most com-
plete table (ie, there was no data in the smaller tables not al-
ready present in the largest table).

Several studies included in the systematic maps contained
multiple potential values for a particular attribute eg, if a single
study had multiple populations and/or multiple outcomes.

Common strategies for maintaining relationships between
such data in the tables of CEE maps included “expanding rows”
(n¼ 6), “expanding columns” (n¼ 2), or a combination of both
(n¼ 5) (see Figure 2). The remaining 6 maps either did not pre-
sent/extract studies with multiple potential values per attribute
(n¼ 1) or opted to house multiple values within a single cell of
the table (n¼ 5, discussed further below).

“Expanding rows” refers to the practice of structuring a data
table in long form: recording an entity over multiple rows. In
long-form tables, a study investigating eg, 3 different outcomes
might be recorded over 3 different rows. Although the data en-
tered under the “outcome” data field might be unique in each of
these 3 rows, the data for all other attributes will be repeated
(Figure 3A).

In contrast, “expanding columns” describes the practice of
structuring a data table in wide form; expanding what would be
considered a single data field in long-form tables across several
columns. Thus, all unique values associated with the data field
can be recorded across a single row, eg, a study reporting 3 dif-
ferent outcomes might be recorded across a single row if the
“outcome” attribute is split into 3 unique columns (eg, “outcome
1,” “outcome 2,” and “outcome 3”) (Figure 3B).

The other strategy for presenting related data in a table was
to record multiple values within a single cell for multiple data
fields (n¼ 11), whereas 1 map presented multiple values per cell
for only a single data field within the database (this distinction
matters for reasons we discuss below). The practice of present-
ing multiple values in a single cell of the database was observed
for most (5 of 6) of the maps which avoided expanding row/col-
umn structure, and similarly for most (5 of 6) of the maps adopt-
ing a long form, expanded row structure.

2011

2012

2013

2014

2015

2016

2017

2018

2019

1 2 3 4 5

Number of CEE systema�c maps published

Ye
ar

CEE Systema�c Mapping Methodology Published

Number of CEE systema�c maps published per year

Figure 1. Publication history of CEE SEMs indicating the number of maps pub-

lished per year. The year in which the CEE guidance on systematic mapping

methods was published (2016) is marked on the corresponding bar (James et al.,

2016).
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Table 2. Description of the Storage Technologies Used by CEE Systematic Maps

Storage
Technology Description

Spreadsheets Spreadsheets are stand-alone applications which offer functionality for end-users wishing to explore and/or manipulate
data (Zynda, 2013). A spreadsheet stores data in the cells of 2-dimensional arrays made up of rows and columns. By
referencing the coordinates of cells in mathematical formulae, spreadsheet applications such as Microsoft Excel facilitate
analysis, transformation, and visualization of tabular data. Although designed and optimized for quantitative data and ac-
counting applications, spreadsheets are commonly used for storing and organizing data in a variety of research contexts,
including systematic mapping exercises.

Relational
databases

A relational database uses several formally described tables to organize data. Each table stores instances of an entity (across
rows), described by a series of attributes (columns). In contrast to storing data in a single, flat data table, relational data-
bases are able to preserve the connection between related entities. These connections are predefined and created through
a system of referencing unique identifiers (primary/foreign keys) in corresponding tables. This allows users to enrich their
queries with connected information, such that more complex questions can be asked of the evidence base (Elmasri and
Navathe, 2013).

No
Expanding
Columns/

Rows

Expanding
Rows

Expanding
Columns

Expanding
Rows & 

Columns

1 12 2 334 4 5 66 5

Rela�onal Database Spreadsheet

Single data entry per cellMul�ple entries per cell

Structuring choices for CEE systema�c maps

Figure 2. The number of CEE systematic maps that are structured with expanding rows and/or expanding columns as a means of preserving data relationships. Maps

using the relational database storage technology are presented on the left, while maps using the spreadsheet storage technology are presented on the right. In addi-

tion, the numbers of systematic maps which store multiple values within a single cell of their data table/s are indicated by solid shading, whereas those that do not are

indicated by patterned shading.

Author Year Popula�on Outcome

Scien�st et al. 2016 Mouse Reduced Birth Weight

Scien�st et al. 2016 Mouse Tumors

Scien�st et al. 2016 Mouse Behavioral Changes

Author Year Popula�on Reduced Birth
Weight Tumors Behavioral

Changes

Scien�st et al. 2016 Mouse Yes Yes Yes

Expanding Columns 

Expanding Rows

A  Long form data table B Wide form data table

Figure 3. Illustrative example of how “expanding-rows” (A) and “expanding columns” (B) are used in long-form (A) and wide-form (B) tabular data structures,

respectively.
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Data Accessibility
Eighteen of 19 surveyed systematic maps presented users with
static data visualizations within their study reports (eg, bar
charts, tables, and heat maps) as a means of accessing trends
within the evidence. Six systematic maps additionally provided
users with an open-access interactive data visualization dash-
board, such that users could choose trends for exploration
within the map. Four of the 6 maps supplied comprehensive
guidance and/or instruction for users wishing to interact with
the visualization dashboard.

Far fewer mapping exercises provided any such comprehen-
sive guidance for querying their database output, with only 2 of
19 maps providing a detailed help file for users wishing to query
the database (Haddaway et al., 2014; Randall and James, 2012).
This was also seen in mapping exercises presenting guidance
on interacting with their data visualization dashboards, none of
which provided equivalent detailed guidance for querying the
underlying database. Instead, 6 CEE systematic maps dedicated
only brief discussion to querying within the text of their study
reports, leaving 11 maps which offered no discernible guidance.

Where provided, the querying practices identified in user
guidance/instruction were “filtering,” “sorting”/“ordering,”
“searching,” or some combination thereof (see Supplementary
Table 4). Specific examples of queries which could be run
against the database were rarely provided in such guidance,
with only 2 of 19 maps providing an illustrative example of how
a user’s plain-text question is translated into querying the data-
base (Haddaway et al., 2014; Randall and James, 2012), and a fur-
ther 2 of 19 making only brief mention of how a specific data
field might be filtered (Cresswell et al., 2018; Randall et al., 2015).
None of the maps reported the queries or querying processes
used to generate visualizations or analyses. Two maps (Cheng
et al., 2019; McKinnon et al., 2016) indicated that an additional
data processing step had been conducted eg, using the statisti-
cal programming language R. Cheng et al. (2019) provided a link
to the code used for this analysis, however the link was broken
at the time this survey was conducted.

Transparency
Thirteen of 19 surveyed CEE systematic maps presented only
the controlled vocabulary code which was used to classify the
data of interest, not recording the raw data itself in the map. Six
of 19 maps maintained a link between this code and the raw
data/the coders’ interpretation of the raw data. Approaches to
this included using data fields which contain free-form text
alongside the controlled vocabulary terms applied to categorize
this free text (5 of 6 maps, Macura et al., 2015), and providing the
location of the raw data within the original study report repre-
sented as code in the systematic map (1 of 6 maps, Haddaway
et al., 2015).

Seventeen of 19 CEE mapping exercises provided a codebook.
Codebooks were generally supplied separate to the systematic
map database, in a different file and/or format (n¼ 14), although
some incorporated codebooks into the database as either look-
up tables (n¼ 1, Leisher et al., 2016), or separate spreadsheets
within the same workbook as the systematic map (n¼ 2, Bernes
et al., 2015, 2017).

Codebooks largely presented the controlled vocabulary
terms used to code study attributes (12 of 17) but did not always
provide this detail (5 of 17). For codebooks which did provide
controlled vocabulary terms, a narrative description or discus-
sion of the potential types of data which might be assigned cer-
tain codes was presented in only 2 of the codebooks.

Relationships between controlled vocabulary terms were
generally omitted from codebooks and/or the systematic map
databases themselves, except for 1 map which structured its
code as a hierarchy of nested terms (Haddaway et al., 2015).

DISCUSSION

CEE has been a driving force for the introduction of systematic
mapping to the environmental sciences. Their maps act as case
studies for adapting evidence-based methodologies to other
fields. CEE’s involvement of stakeholders in their systematic
mapping approach has undoubtedly resulted in outputs of value
to those stakeholders and their specific research contexts
(Haddaway and Crowe, 2018). The following discussion does not
critique the use of CEE’s systematic maps for their intended
purposes, but instead takes the perspective of EH applications
to identify transferable aspects of current practice and remain-
ing challenges.

Systematically Mapping the EH Evidence Base: General
Considerations
EH data are complex, heterogeneous, and highly interconnected
(Vinken et al., 2014). Chemical risk assessment and risk manage-
ment seek to understand the outcomes which result from these
complex connections—synthesizing evidence of varied resolu-
tion and origin eg, considering in combination evidence from
bio- and/or environmental monitoring, in vitro, in vivo, in silico,
and/or epidemiological studies (Martin et al., 2018; Rhomberg
et al., 2013; Vandenberg et al., 2016).

The relationships which hold the disparate EH evidence
base together are vital for building a more complete under-
standing of toxicity. These relationships underpin adverse out-
come pathways (ie, how molecular initiating events lead to
apical outcomes through a causal pathway of connected key
events [Edwards et al., 2015]), quantitative structure-activity
models (ie, how the chemical structure of a substance can be
quantitatively related to its physicochemical properties and bio-
logical activity [Schultz et al., 2003]), read-across applications (ie,
where predictions for data-poor substances are based on struc-
turally related data-rich substances) and other key components
of chemicals policy workflows. Such relationships are also vital
for understanding the impacts of real-world exposures to mix-
tures of chemical substances (Sexton and Hattis, 2007).

The interconnectedness of the EH evidence base means that
even if SEM methodology is used to explore just a subset of EH
research, or to facilitate just 1 component of chemicals policy
workflows—the data collated, extracted, and coded are likely to
be of relevance to a myriad of alternative EH research interests
and chemicals policy applications. Thus producing “multi-
purpose,” interoperable EH SEMs that can be queried according
to a variety of specific use cases is the most resource-efficient
means of implementing the methodology.

However, many of the complex relationships constituting
the EH evidence base are unknown to individual users, who will
only have cognitive access to part of the total knowledge space
in a given domain. Thus, in addition to facilitating the identifi-
cation of trends which are based on relationships already
known to users, EH SEMs should also facilitate the identification
of relationships which are unknown to users. This would enable
a more highly resolved and customizable querying process
which extends beyond the user’s personal understanding of the
domain, adding valuable connected contextual information
with which to explore and interpret trends. It is this value,
gained through accessing as well as exploring relationships—
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along with the inherent complexity of those relationships—
which makes the flat and rigid tabular data structures currently
characterizing CEE systematic maps ill-suited to the task of sys-
tematically mapping EH data.

Limitations of Current Evidence Mapping Practice: Data Storage and
Structure
Data storage is the fundamental component required for creat-
ing a systematic map database, underpinning many of the
themes assessed in this survey. This discussion focuses on
issues of data storage technology and its close relationship with
data integrity.

Use of spreadsheets (and other flat data tables). The majority of CEE
systematic maps are stored and structured as flat data tables,
mostly as spreadsheets. Tables are a simple, familiar, and ro-
bust means of structuring data. However, maintaining relation-
ships within a 2-dimensional array of rows and columns can be
challenging. This is because the only explicit relationships in a
2-dimensional array (single table), are between the attributes
(columns) and the entities (rows). Any relationships which exist
between columns/attributes in a table can only be inferred by
the user (Figure 4). We found making such inferences a chal-
lenge when surveying systematic maps of research outside of
our own fields of expertise (see Supplementary Table 3). The
prior knowledge required to successfully navigate data relation-
ships within tabular maps limits their accessibility for less spe-
cialized users.

A variety of techniques were employed by CEE maps for
maintaining the relationships between attributes, and for

allowing attributes to record multiple values. Of particular note
were the practices of expanding columns to produce wide-form
tables, and of housing multiple values within a single cell.
Although expanding columns and/or housing multiple data
entries in single cells do not threaten data integrity when ap-
plied to only 1 single attribute (see Thorn et al., 2016,
Supplementary Table 3), a loss of referential integrity was noted
for maps implementing this practice for multiple attributes.

Such loss is illustrated in Figure 5, whereby column expan-
sion (Figure 5A), and similarly multivalued cells (Figure 5B),
falsely assert data relationships unrepresentative of the raw
extracted data. Loss of referential integrity is acknowledged by
Neaves et al. (2015), where the authors highlight falsely asserted
interattribute relationships as a limitation of their mapping
exercise.

The alternative strategy used by CEE systematic mappers
when structuring data as a flat table was row expansion.
Although advantageous for maintaining referential integrity,
these long-form data structures can be challenging to process.
They can create confusion for end-users interpreting what the
study “unit” (entity) which constitutes a new row in the data ta-
ble is (see Supplementary Table 3). Users must also be cautious
of duplicates when querying specific data fields within the ta-
ble. Duplicating data can also increase the risk of data-entry
errors for systematic mappers tasked with manually populating
a long-form table, resulting in inconsistencies.

In summary, the spreadsheet storage technology is an
unsuitable long-term solution for EH SEMs, with wide-form
tables potentially compromising data integrity, and long-form
tables being impractical and/or error-prone.

A B C D

1

2

3 α

4

5 β γ

6

A Rela�onships in a flat data table

B Illustra�ve example

Species Age Sex Outcome

1 Mouse 1 year Male Tumors

2 Rat 2 years Female Tumors

3 Human 15 years Female Tumors

4 Human 30 years Female Tumors

5 Mouse 0.5 years Male Tumors

6 Human 35 years Female Tumors

Figure 4. A, The relationship between attribute A and entity 3 is explicit in the formal structure of the array. However, the relationship between attribute A and attrib-

ute C is implicit and has to be inferred by the user from features external to the table eg, conventions around interpreting tabular data. The external conventions are

not part of, or known to, the table and may not be known to the user. B, For example, a user may (in this case, correctly) infer that “sex” is a property of “species” and

not “outcome,” but this inference is made using external conventions and contextual understanding—the relationship is not in fact known to the table. All the table

can assert is that each entity 1 through 6 has a relationship to properties of sex, age, species, and outcome, respectively.
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Use of relational databases. Many of the discussed challenges as-
sociated with implementing systematic maps as flat data tables
or spreadsheets are addressed by relational databases—the al-
ternative storage technology identified in current systematic
mapping practice (see Table 2). Relational databases divide enti-
ties into their own, referenceable tables—allowing links be-
tween related entities to be created and maintained. These
links are coded into the database itself, and therefore do not
rely on an end-user’s implicit understanding of external con-
ventions to correctly interpret.

The structure of a relational database is organized in an on-
write schema, which is effectively a “blueprint” for the database
(Karp, 1996); ie, the schema defines what constitutes an entity
and therefore a data table, which attributes describe an entity,
how an entity is related to other entities and therefore how data
tables must reference others, all before data are stored. This
necessitates a sound understanding of both the data to be
stored in the database, and also the potential applications of
the database. In fact, the optimization of end-users’ capacity to
query the database for a particular application is a key driver of
schema design (Blaha et al., 1988).

The “schema first, data later” (Liu and Gawlick, 2015) ap-
proach of relational databases requires a more detailed level of
prior knowledge regarding the structure of the evidence and/or
the applications of the database. This is problematic for EH
SEMs for several reasons.

First, the potential applications of an EH SEM are varied.
Even where a specific use case is known, an EH SEM should at
least avoid restricting access to the evidence base for alternative
uses. Second, SEM methodology advises against making deci-
sions which are based on post hoc assessment of included

studies (James et al., 2016). However, without this assessment it
is difficult to design a schema capable of housing all the entities
and relationships likely to arise from the varied study designs
and/or evidence streams collated through an EH SEM exercise.
Even if this prior assessment were advocated by SEM methodol-
ogy and did not lead to the introduction of bias or inconsisten-
cies, there would likely be far too much data for mappers to
feasibly consider in the design of an EH SEM’s schema.

Third, SEMs are currently constructed by human mappers,
who screen, assess, and extract data from 1 included study at a
time. In this manner, mappers’ understandings of the relation-
ships between entities are limited to the level of the individual
study. Thus, it can be difficult to design a schema able to appro-
priately account for relationships which occur at an interstudy
level, compromising end-users’ ability to query these relation-
ships. For example, a one-to-many relationship between popu-
lation and outcome entities may be appropriate at the level of
the individual study, where a single population can be investi-
gated for many outcomes. However, at the evidence-base level,
a particular outcome may in fact have been reported by many
studies, and therefore investigated in many different popula-
tions—making a many-to-many relationship between popula-
tion and outcome, and a schema capable of representing this
relationship, more appropriate. Alternatively consider the rela-
tionships between adverse outcomes along a causal pathway.
Although a relationship between eg, Outcome A and Outcome C
might become apparent at the evidence base level, mappers
may only have access to relationships between eg, Outcome A
and Outcome B, or Outcome B and Outcome C—which occur at
the individual study level.

Outcome

Author Year Mouse Rat Reduced Birth 
Weight Tumors Behavioral

Changes

Scien�st et al. 2016 Yes Yes Yes Yes Yes

Popula�on

A  Expanding columns leading to loss of referen�al integrity

B  Mul�-valued cells leading to loss of referen�al integrity 

Author Year Popula�on Outcome

Scien�st et al. 2016 Mouse, Rat Reduced Birth Weight, Tumors,
Behavioral Changes

Figure 5. A, Loss of referential integrity resulting from the column expansion of more than 1 study attribute (data field). The recording of multiple populations and mul-

tiple outcomes on a single row compromises the ability of users to decipher which population was affected by which outcome. The table asserts that both populations

(mice and rats) were affected by all 3 outcomes (reduced birth weight, tumors, and behavioral changes), respectively—which may not be truly representative of the raw

data, compromising data integrity. B, This is similarly observed when multivalued cells are used for more than 1 study attribute.
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Finally, the growing volume and scope of EH data means
that even if it were possible to devise a schema capable of ac-
counting for all study designs that exist at present, new, and
emerging study designs would soon out-date the schema, ne-
cessitating laborious, and potentially error-prone schema mi-
gration (Segaran et al., 2009).

Avoiding these issues and attempting to balance the rigidity
of a schema with the fluidity or heterogeneity of the data it
organizes forces mappers to implement work-arounds (eg,
compromising the resolution of SEMs), the likes of which might
compromise the utility of SEMs for chemicals policy applica-
tions (see Supplementary File 1).

Overcoming the Limitations of Spreadsheets and RDBs: Knowledge
Graphs for Mapping EH Evidence
Expanding and enriching the application of SEMs to varied EH
research problems requires moving away from the rigidity of
tabular data structures and their predefined relationships.
Instead, SEMs in EH should utilize more flexible, schemaless data
models and storage technologies. We believe this flexibility is
offered by knowledge graphs and associated graph-based data
storage technologies.

Knowledge graphs. The scientific knowledge codified in a study re-
port can be readily formalized as a set of subject-predicate-object
“triples.” These triples can be stored as mathematical “graphs”
(nodes and edges) where the nodes are the entities (subjects and
objects) and the edges are the predicates, or relationships, between

the subjects and the objects (see Figure 6). Because the graph is a
direct representation of the semantic content of the studies being
stored, it can be said to represent the knowledge captured in the
study—hence “knowledge graph” (Ontotext, 2019b).

In graph database implementations, data are stored as
nodes and relationships are stored as edges. Unlike the rela-
tional model, the graph model regards relationships as first-
class entities, and keeps them alongside the values they con-
nect. Rather than “artificially” creating relationships through
cross referencing primary and foreign keys in data tables, graph
databases natively store relationships, preserving their semantic
value, and making them accessible to queries (Figure 6 and 7)
(Robinson et al., 2015). This is particularly valuable when the
relationships underpinning data cannot be directly character-
ized a priori, or when the relationship between 2 pieces of infor-
mation (nodes) can only be inferred through traversal of
relationships which indirectly connect those nodes (Ontotext,
2019c) (eg, the inferred causal relationship between “Chemical
X” and “Tumours” in Figure 7).

The graph model’s flexibility and emphasis on relationships
allows it to accommodate new developments in EH research.
Data produced by studies of novel design can be incorporated
among, and related to, preexisting data in the database without
needing to update schema and subsequently migrate data
(Robinson et al., 2015). This is illustrated in Figure 7 which
expands the amount of data populating the graph in Figure 6.

Knowledge graphs are already being exploited in other fields
centered around the analysis of highly connected data (Ghrab

Mice were exposed to TBBPA (CAS 79-94-7)

Mouse

subject

exposed to 

predicate

Chemical X

object

Chemical X

subject

has purity

predicate

99%

object

Materials and Methods

Mice were exposed to Chemical X (99 %) fo
to the guidelines. On exposure day 4 the mi
measured. Finally, the concentra�on of TBB

A Knowledge captured in unstructured, textual data

B  Knowledge structured as seman�c triples C Knowledge stored as a queryable graph

Mice were exposed to Chemical X (99%)

Figure 6. (A) Knowledge captured in unstructured, textual formats e.g. scientific articles, is distributed and programmatically inaccessible. (B) This knowledge can be

structured in an intuitive and machine-readable way as a series of semantic subject-predicate-object triples – where entities are the subjects and/or objects and the

relationships between entities are the predicates. (C) Entities can be stored as the nodes of a graph. The semantic value of the relationships between entities are pre-

served and stored as edges. The graph can continue to grow to produce a queryable representation of all knowledge on a topic (see Figure 7).
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et al., 2016). Notable use cases for graphs include: mapping com-
plex networks of biological interaction (Aggarwal and Wang, 2010;
Have and Jensen, 2013; Pavlopoulos et al., 2011); representing
chemical structures (Aggarwal and Wang, 2010); tracking commu-
nication and transaction chains for fraud detection (Castelltort and
Laurent, 2016; Sadowski and Rathle, 2015); feeding recommenda-
tion engines for online retailers (Webber, 2018); facilitating highly
customized outputs for social media platforms (Gupta et al., 2013;
Weaver and Tarjan, 2013); promoting a more proactive service
from search engines (Singhal, 2012); and many more. The key com-
monality between these applications is the identification of trends
or patterns of information that facilitate the generation of new
knowledge that is actionable or of value to decision-making.

Schemaless data storage and data exploration. As relationships are
stored as queryable, first-class entities—the schema which im-
plicitly structures data begins to emerge naturally and can be
discovered and exploited by knowledge finding applications on-
read (Jankovi�c et al., 2018; Kleppmann, 2017).

In CEE’s current systematic mapping practice, trend explora-
tion is predominantly reliant on filtering columns of a data table
for specific values of interest. This requires that users are famil-
iar with the structure of the database ie, they know which col-
umns house values of interest, what those values of interest
are, and that their interests align with the data model imposed
by the tabular map. By comparison, graphs are amenable to
some ambiguity in a user’s query. Beyond the potential exis-
tence of an entity of interest, users do not require prior knowl-
edge of the graph’s structure, or the relationships connecting
the entity of interest to others, to successfully gain an under-
standing of the graph space around that entity. This facilitates
the building of data models which contextualize this under-
standing within a particular application.

In current systematic mapping practice, data models are
closely tied to the data storage mechanism and its structure.
Knowledge graphs do not fix data models on-write, separating
data models from data storage—thus it is possible to apply mul-
tiple models to the same graph, optimizing access to the evi-
dence base for a variety of interests and queries. Changes can
also be readily incorporated into these data models without mi-
grating the underlying data they access.

Ontologies. A key component of wider data modeling activities is
the development of domain-specific ontologies. An ontology is
an agreed upon and shared “conceptualization” of a domain
(Dillon et al., 2008), comprising a formal specification of terms
used for describing knowledge and concepts within a domain
and their relationships to each other, expressed through a stan-
dardized controlled vocabulary (Ashburner et al., 2000; National
Center for Biomedical Ontology, 2019). Developing domain-
specific ontologies closely mirrors the coding step of systematic
evidence mapping, which is designed to conceptualize the evi-
dence base through organizing extracted data using a controlled
vocabulary of terms.

In knowledge graph applications, ontologies are stored as
data themselves (Noy and Klein, 2004)—forming an additional
“layer” within the graph. Raw extracted data stored in the graph
can be viewed as instances of an ontology’s classes. By using
data models to bind nodes of raw data to the nodes of a suitable
ontology, users can navigate the evidence base through this on-
tology—but do not lose the ability to access the underlying raw
data relevant to more highly resolved queries. Furthermore,
maintaining a link between raw data and the controlled vocabu-
lary code of a shared toxicological ontology serves to promote
transparency, interoperability (Hardy et al., 2012), and the devel-
opment of training sets for machine-learning classifiers.

Knowledge graphs can con�nue growing without the need to migrate data

Figure 7. Storing relationships as first class entities allows knowledge graphs to continue to grow and expand without needing to revise schema and migrate data. This

flexibility is particularly useful when relationships between entities cannot be characterised a priori.
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However, these concepts are underexplored in current evi-
dence mapping practice where the majority of maps presented
code in lieu of raw extracted data. This compromises transpar-
ency and limits users’ ability to query data at variable resolu-
tion. In addition, coding vocabularies were rarely descriptive of
the relationships that linked 1 term to another, with only 1 map
organizing its code as a hierarchy of nested terms (Haddaway
et al., 2015). Where relationships between code were implied,
this was generally stored in separate codebooks (ie, not as data
within the database)—requiring users to consult a separate doc-
ument for interpretation.

Other Lessons From Current Systematic Evidence Mapping Practice
Studying the key features of a systematic map database, ie, stor-
age technology and the data structuring choices available for
those technologies, highlights the need to pursue more flexible,
schemaless approaches when adapting the methodology for EH.
We have identified knowledge graphs as the technology capable
of providing this flexibility. Although briefly covered in the
above discussion, this survey identified additional aspects of
current evidence mapping practice which are worthy of
discussion.

Data accessibility, user-interfaces, and map documentation. A query-
able database is the main, but not sole, output of mapping exer-
cises. All CEE maps are accompanied by a study report which
details methodology, presents key trends through data visuali-
zation, and/or describes further research needs. These accom-
panying reports can be thought of as documentation for their
database products. In the context of software development,
documentation is a formal written account of each stage of de-
velopment and the effective use of the software for its intended
application. It is an asynchronous means of communication be-
tween all involved stakeholders, including end-users and future
developers, which transforms the tacit knowledge of developers
into an explicit, exchangeable format (Ding et al., 2014; Rus and
Lindvall, 2002).

We found that, in general, the documentation of the maps
was insufficient to make explicit the tacit knowledge of the map
developers. This presented a barrier to successfully and effi-
ciently querying the SEMs assessed in our survey. We observed
that mappers’ knowledge of their data model, database struc-
ture and intended uses for their database were generally under-
reported in accompanying SEM study reports. Discussion dedi-
cated to instructing end-users on how they could or should in-
teract with the database was particularly limited. This might
compromise the ability of nonspecialist users to query SEMs for
their own research interests. Similarly, trends visualized and
analyzed in SEM study reports, which might serve as illustrative
examples of how to interact with the SEM, were not accompa-
nied by any documentation of the queries used to obtain the an-
alyzed subset of evidence from the database—apart from 1
instance where the authors referred to code in GitHub, but the
link was broken (Cheng et al., 2019).

A more common practice for facilitating end-user access to
trends in the evidence base was the development of interactive
data visualization dashboards (Bernes et al., 2015). Unlike their
underlying databases, these dashboards were generally accom-
panied by documentation detailing how users could interact
with the dashboard. This interaction was intuitive and required
minimal technical expertise—with many dashboards adopting
“point-and-click” functionality. However, interactive visualiza-
tion dashboards should not be conflated with the systematic
map database itself. These dashboards represent the visualized

outputs of a set of predefined queries, where users can select
which of the set to display. They can be thought of as user-
interfaces which have been optimized for particular queries.
However, users cannot devise and visualize customized queries
through such dashboards. For this, access to the underlying
database is required—reinforcing the need for its
documentation.

Thus the role of high-quality software documentation in
promoting transparency, growth, development and mainte-
nance of SEMs as living evidence products should not be under-
estimated when adapting the methodology for EH.

Including database software capacity in evidence mapping teams. A fi-
nal point of interest from this survey of current systematic
mapping practice is that the multidimensionality of the rela-
tional database storage technology was not utilized in the CEE
maps which employed the technology. This was evidenced by
systematic maps which used a flat data structure even within a
relational database software environment. Such maps included
Neaves et al. (2015)—which presented a single, flat data table
with expanded columns despite the authors’ acknowledgment
of the limitations of this structure and the capacity of the cho-
sen storage technology to overcome them.

Reasons for implementing flat relational databases were
unclear or unreported. However, facilitating the access of non-
specialist users to SEM outputs may have been a potential driver
of this practice. Flat tables are associated with simple querying
processes such as filtering columns, whereas relational data-
bases require a more technically demanding process of con-
structing queries in structured query language (SQL). However,
these concerns can readily be addressed by developing user-
interfaces such as the visualization dashboards discussed
above, and do not explain why inherently flat storage technolo-
gies, such as spreadsheets, were not used preferentially in such
cases.

Thus, an alternative motivation for implementing flat rela-
tional databases might be a lack of familiarity with database
storage technologies. This highlights a key challenge for adapt-
ing SEM methodology to EH, where subject specialists interested
in mapping EH evidence may not have the necessary training to
successfully implement graph-based storage. This underscores
the value of comprehensive documentation—where the techni-
cal construction and querying of emerging maps might serve as
training opportunities for others interested in the methodology.
It also indicates the importance of developing these skills
within mapping teams—where recruiting databasing specialists
to SEM teams might be considered as important as recruiting
statisticians to systematic review teams.

CONCLUSION

Systematic evidence mapping is an emerging methodology in
EH. It offers a resource-efficient means of gaining valuable
insights from a vast and rapidly growing evidence base. Its over-
arching aims, of organizing data and providing computational
access to research, should facilitate evidence-based approaches
to chemical risk assessment and risk management decision-
making.

The methodology has been applied in the wider environ-
mental sciences by the CEE. Characterizing the state-of-the-art
of CEE systematic mapping practices offers valuable lessons for
adapting the methodology for EH.

In particular, the rigid data structures which dominate cur-
rent practice are ill-suited to the complex, heterogeneous and
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highly connected data constituting the EH, and toxicology evi-
dence bases. Flat data structures and those which are closely
linked to predefined, on-write schema are optimized for a nar-
row range of specific use cases, which fits poorly with the much
broader range of uses associated with chemicals policy
workflows.

Successful adaptation of SEM methodology for EH would be
accelerated by adopting flexible, schemaless database technolo-
gies in place of rigid, schema-first approaches. We have argued
that knowledge graphs are 1 technological solution, which po-
tentially provide an intuitive and scalable means of represent-
ing all of the connected, complex knowledge on a topic.
Converse to the flat or relational databases favored by current
practice, knowledge graphs store relationships between data as
first-class entities, preserving their semantic value and making
them accessible to queries. This ability to explore data through
relationships or “patterns of information” does not require that
users are familiar with a predefined data model or schema. This
vastly expands the exploratory use cases of SEMs and even
facilitates the discovery of new, previously uncharacterized
relationships.

There are several readily available commercial and open-
source graph database implementations (ArangoDB, 2019;
Neo4j, 2019; Ontotext, 2019a; Stardog, 2019), and a variety of
knowledge graph applications which demonstrate the power
and utility of the graph data model and its inferencing capacity.
Such resources are valuable for investigating the storage and
exploration of SEMs as knowledge graphs and help to lower the
entry barrier associated with familiarizing and training map-
pers in the use of a technology novel to the field.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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What are the effects of agricultural management on soil or-
ganic carbon in boreo-temperate systems? Environ. Evid. 4,
1–29.

Haddaway, N. R., Macura, B., Whaley, P., and Pullin, A. S. (2018b).
ROSES RepOrting standards for Systematic Evidence
Syntheses: Pro forma, flow—Diagram and descriptive

summary of the plan and conduct of environmental system-
atic reviews and systematic maps. Environ. Evid. 7, 4–11.

Haddaway, N. R., Styles, D., and Pullin, A. S. (2014). Evidence on
the environmental impacts of farm land abandonment in
high altitude/mountain regions: A systematic map. Environ.
Evid. 3, 17–19.

Hardy, B., Apic, G., Carthew, P., Clark, D., Cook, D., Dix, I., Escher,
S., Hastings, J., Heard, D. J., Jeliazkova, N., et al. (2012).
Toxicology ontology perspectives. ALTEX 29, 139–156.

Have, C.T., and Jensen, L. J. (2013). Databases and ontologies are
graph databases ready for bioinformatics? Bioinformatics 29,
3107–3108.

Weaver, J and Tarjan, P. (2013). Facebook linked data via the
Graph API. Semant. Web. 4, 245–250.

Hoffmann, S., de Vries, R. B. M., Stephens, M. L., Beck, N. B.,
Dirven, H. A. A. M., Fowle, J. R., Goodman, J. E., Hartung, T.,
Kimber, I., Lalu, M. M., et al. (2017). A primer on systematic
reviews in toxicology. Arch. Toxicol. 91, 2551–2575.

Hoffmann, S., and Hartung, T. (2006). Toward an evidence-based
toxicology. Hum. Exp. Toxicol. 25, 497–513.
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